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Constitutive Relations

The Stress Tensor

Stress

Units of pressure (Pa).

τ =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


Pressure

P = −1
3
(τxx + τyy + τzz)

Deviatoric stress

σij = τij + Pδij
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Constitutive Relations

Strain Rate

Strain

ε =
∆L

L

Strain rate

Dij = ε̇ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

Relationship to stress

Dij = F (σ, . . . )σij

where σ is the second invariant of σij

2σ2 = ‖σij‖2
Frob = σijσij
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Constitutive Relations

Simplifications

Symmetry

Deviatoric stress and strain rate are symmetric tensors.

σij = σji Dij = Dji

Trace zero

Deviatoric stress has zero trace.

Incompressibility implies strain rate is also trace free.

σii = 0 Dii = 0
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Constitutive Relations

Glen Flow Law

Recall

Dij = F (σ, . . . )σij

Power Law

F (σ, T, P ) = A(T ∗)σn−1

in terms of homologous temperature

T ∗ = T + CP

Arrhenius Relation

A(T ∗) = A0 exp
(
− Q

RT

)
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Constitutive Relations

Goldsby-Kohlstedt Flow Law

A nontrivial combination

F (σ, T ∗, P, d) = Fdiff(σ, T ∗, d) + Fdisl(σ, T ∗, P )

+
(

1
Fbasal(σ, T ∗)

+
1

Fgbs(σ, T ∗, P, d)

)−1

Each term has form similar to Glen’s flow law, but

different exponents, but all ≥ 1
different Arrhenius terms

Monotonicity

The function D(σ) = F (σ, T ∗, P, d)σ is strictly increasing.
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Stokes Equations

Stokes equations

Incompressibility

∇ · u = 0

Force balance

(Inertial term) = ∇ · τ + F

Slow flow

drop the inertial term and write in terms of deviatoric stress

∇P = ∇ · σ + F

where F = ρg is gravitational force
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Stokes Equations

Inverting a flow law

Working with stresses is sometimes inconvenient.

A different approach

With D2 = 1
2DijDij , define ν(D, . . . ) so that the scalar equation

σ = 2ν(D, . . . )D

is equivalent to
D = F (σ, . . . )σ

Example

For the Glen flow law,

ν(D,T ∗) =
B(T ∗)

2
D

n−1
n
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Basal dynamics

Linear sliding

Note

All basal sliding is thermally activated.
If ice is frozen to the bed, there is no sliding.

Motivation

Linear viscous till

viscosity ν

thickness L

(basal velocity) =
L

ν
(basal stress)

Dragging

(basal stress) = β(basal velocity)
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Basal dynamics

Alternate schemes

Power law till

ui = Cσn−1σi3

σi3 = β(u)ui

Plastic till

σi3 = σcritical
ui

|u|

Basal water models

1 Solve a nonlinear PDE for water pressure (Jesse Johnson)

2 Use bed elevation and basal melt rate in an ad-hoc scheme
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Shallow Ice Approximation

Non-dimensionalization

Critical assumptions

Thickness scale [H], horizontal scale [L], aspect ratio ε = [H]/[L]

σ13, σ23 ∼ ρg[H]ε σii, σ12 ∼ ρg[H]ε2

P − ρg(h− z) ∼ ρg[H]ε2

Consequences

1 Only shear parallel to bed remains σ13, σ23

2 Shear is proportional to depth.

3 Flow is completely determined by local quantities
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Shallow Ice Approximation

Equations

The system

∂h

∂t
= M −∇ ·Q

Q = UH and Q = D∇h

∂U

∂z
= −2F (σ, T, . . . )P∇h

∂T

∂t
+ u · ∇T = K

∂2T

∂z2
+ (strain heating)

Isothermal, Glen

ht = M +∇ ·
[
ΓHn+2 |∇h|n−1∇h−Hubasal

]
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Shallow Ice Approximation

Sliding in SIA regions

Example

A common algorithm

1 Compute shear stress at the bed: σi3 = ρgH ∂h
∂xi

2 if Tbed = Tpmp then ui = µσi3

3 else ui = 0

Problems

1 Horizontal velocity is not continuous

2 Vertical velocity is unbounded

3 Poor behavior under grid refinement
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Ice Shelf and Stream Flow

Non-dimensionalization

Thickness [H], thickness variation [s], aspect ratio ε = [H]/[L]

Critical assumptions (Schoof 2006)

σ13, σ23 ∼ ρg[s]ε σii, σ12 ∼ ρg[s]

P − ρg(h− z) ∼ ρg[s]

Recall SIA critical assumptions

σ13, σ23 ∼ ρg[H]ε σii, σ12 ∼ ρg[H]ε2

P − ρg(h− z) ∼ ρg[H]ε2

Consequences

1 No shear parallel to bed

2 Horizontal velocity is independent of depth
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Ice Shelf and Stream Flow

The MacAyeal Equations

Coordinate free form (Vectors in 2 dimensions)

∇ · (2νHD) +∇ tr(2νHD)− βu = ρgH∇h

ν =
B

2

(
1
2
‖D‖2

Frob +
1
2
(trD)2

) 1−n
2n

Usual form

[
2νH(2ux + vy)

]
x

+
[
νH(uy + vx)

]
y
− β1u = ρgHhx[

2νH(2vy + ux)
]
y

+
[
νH(uy + vx)

]
x
− β2v = ρgHhy

ν =
B

2

[
1
2
u2

x +
1
2
v2
y +

1
2
(ux + vy)2 +

1
4
(uy + vx)2

] 1−n
2n
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PETSc

Overview
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PETSc

Message Passing Interface

Advantages

1 Message passing standard

2 Portable

3 Low level

4 Fast

5 Flexible

Disadvantages

1 Low level
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PETSc

Distributed arrays and vectors

DA

Describes parallel layout

1 Ghosted values

2 Periodicity

3 Coordinates

Vec

Holds scalar quantities

1 Can be based on DA

2 Global vs Local

3 Can be viewed

4 Algebra with matrices
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PETSc

Iterative linear algebra

Problems with direct linear algebra

1 Slow: O(n3)
2 Does not take advantage of sparsity

3 Complicated and may not parallelize well

Krylov Subspace Methods

Orthogonalize the subspace span{b, Ab,A2b, . . . , Akb}
Minimize norm of residual r = b−Ax over subspace.

Preconditioning

Better convergence when condition number ‖A‖
∥∥A−1

∥∥ is small.
If P−1A is well conditioned, solve P−1Ax = P−1b.
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PETSc

Krylov Subspace methods

Problem

Efficiently solve Ax = b where x and b are distributed and A is

1 Sparse, huge and distributed OR

2 Defined by a function

KSP Acronym Soup

1 Conjugate Gradients

2 GMRES(n)

3 Bi-CGStab

4 Transpose free QMR

5 MINRES

PC Acronym Soup

1 (block) Jacobi

2 SOR

3 ILU(k), ICC(k)

4 Multigrid

5 External AMG

Bonus

All KSP and PC are extremely customizable at command line.
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PETSc

Putting it all together
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PETSc

Visualization

PETSc

1 Runtime viewers

2 Real-time convergence monitoring for KSP

3 Internal diagnostics and profiling

External software

1 Matlab

2 Vis5D
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Programming Considerations

Other software

Recommended open source tools

1 netCDF: A platform independent binary format

2 FFTW: Discrete Fourier Transforms

3 GSL: Integration, special functions, etc.

4 Python/Ruby: Preprocessing
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Programming Considerations

Parallel considerations

Array layout

1 Our 3D work is column oriented; address as T[i][j][k]

2 3D and 2D arrays should have compatible layout

3 Periodic

Message passing

1 need to communicate ghosted values before taking derivatives

2 ghosted values are small packets

3 latency is more critical than bandwidth

4 multiplexing ghosted communication would help

Scaling

1 many communications per time step

2 can saturate more processors with large grids
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SIA

Class structure

IceModel

IceGrid

parallel layout

IceParam

Serializable
Parameters & history

IceType

F (σ), ν(D)

BedrockType

Constants

OceanType

Coupling
point

IceCompModel

Verification

ShelfModel

Verification

IceType

Abstract class

GlenIce

Isothermal

ThermoGlenIce

Split Arrhenius
(P-B)

HybridIce

G-K for F (σ, . . . )
ThermoGlen for
ν(D, . . . )
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SIA

Core model

Continuity Equation

ht = M −∇ ·Q (1)

Q = D∇h (SIA) Q = UH (MacAyeal) (2)

Staggered grid

Features

1 Explicit mass balance

2 Semi-implicit temperature

3 Adaptive time stepping

4 Asynchronous grain size

5 Flexible parallel regridding
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The Macayeal Equations

The iteration

Algorithm

until converged do
compute effective viscosity
assemble linear system
solve linear system

end

Orderings

1 DA ordering is nice for finding neighbors

2 Matrix structure would be obnoxious in DA ordering

3 We want to solve for two vectors (u,v) simultaneously

4 We can use a different ordering for the linear system
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The Macayeal Equations

Effective viscosity

Equation

ν =
B(T, . . . )

2

[
1
2
u2

x +
1
2
v2
y +

1
2
(ux + vy)2 +

1
4
(uy + vx)2

] 1−n
2n

Observations

1 We need ghosted values to calculate ν

2 It is hard to find neighbors in KSP-ordering

3 We need to do a scatter operation during the iteration.

Alternatives

1 Manually communicate ghosted values in KSP-ordering

2 Create a new DA to hold 2-vectors and use for Matrix ordering
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The Macayeal Equations

Effective viscosity

Equation

ν =
B(T, . . . )

2

[
1
2
u2

x +
1
2
v2
y +

1
2
(ux + vy)2 +

1
4
(uy + vx)2

] 1−n
2n

Observations

1 We need ghosted values to calculate ν

2 It is hard to find neighbors in KSP-ordering

3 We need to do a scatter operation during the iteration.

Alternatives

1 Manually communicate ghosted values in KSP-ordering

2 Create a new DA to hold 2-vectors and use for Matrix ordering
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The Macayeal Equations

Matrix assembly

Equation

2 [νH(ux + vy)]x + [νH(uy + vx)]y − βu = ρgHhx

SIA Region

Put 1 on diagonal and computed
u on RHS

Macayeal Region

1 13 point stencil

2 ν and β use old u
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The Macayeal Equations

Solving the linear system

Our choice

GMRES(30) with ILU preconditioning

Just as good

CGS with Block Jacobi preconditioning
half the iterations, but iterations take twice as long

Multigrid Preconditioning

1 Would be easy to implement

2 Ice streams are inherently high frequency

3 Probably a waste of time
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The Macayeal Equations

A better scheme

Minimize the Schoof-MacAyeal Functional

J(v) =
∫

Ω

2BH

p

[
Dij(v)Dij(v)/2 + Dij(v)2/2

]p/2 + τ |v| − f · vdΩ

−
∫

∂Ω
F · vdΓ

Nonlinear conjugate gradients

1 Easy to implement with PETSc SNES

2 The Jacobian is essentially the same matrix as before

3 Should converge faster and be more robust
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Shallow Ice

Isothermal Tests

Exact solutions

1 Moving margin similarity

2 Compensatory accumulation

3 Basal sliding with compensatory accumulation

Observations

1 Exact numerical volume conservation

2 Large errors near margin

3 Small errors in interior
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Shallow Ice

Thermocoupled Tests

Exact solutions

1 Compensatory heating

2 Perturbation in anulus

3 Margin has isothermal shape

Observations

1 Convergence of coupled geometry and temperature

2 No “spokes”

3 Verified model produces spokes for EISMINT experiment F
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Macayeal Equations

Exact solutions

The 1D Weertman solution

Dxx =
(ρgh

4B

)n

The 2D Weertman solution

Dxx = Dyy = 3−(n+1)/2
(ρgh

2B

)n

Observation

All second derivatives are zero. These are boring for verification.
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Macayeal Equations

Finding an interesting exact solution

Compensatory drag

1 Choose nontrivial H, b, u, v

2 Compute β1 and β2 to satisfy Macayeal equations

Software helps

Use Matlab or a symbolic algebra software (Maxima, Maple,
Mathematica)

Criteria for a good compensatory solution

1 β1 and β2 should both be nonnegative and reasonably sized

2 β1 and β2 should be similar
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Macayeal Equations

A solution
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Macayeal Equations

How realistic is it?
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Macayeal Equations

Convergence of the linearized problem
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Macayeal Equations

Convergence of the nonlinear problem

Problem

There may be multiple fixed points of our iteration.
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Current data

Accumulation
British Antarctic Survey 2004
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Current data

Temperature
British Antarctic Survey 2004
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Current data

Bed elevation
British Antarctic Survey 2004



Verification Antarctica Summary

Current data

Thickness
British Antarctic Survey 2004
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Current data

Uplift Rate
Ivins and James (1998; JGR)
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Current data

Geothermal heat flux
Shapiro & Ritzwoller (2004; Earth Planetary Sci. Let.)
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Current data

Balance velocity
Bamber, Vaughan and Joughin (1999)
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Tuning

Assessing a flow law
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Tuning

Glen vs. Goldsby-Kohlstedt

One measure

Let F be the frozen bed region and optimize enhancement factor
so ∫

F
ht = 0.

Observe ‖ht‖L1(F ) and ‖ht‖L2(F ).

Constitutive Relation 1-norm 2-norm

Goldsby-Kohlstedt 0.52 m/a 1.5 m/a
Glen 1.3 m/a 4.9 m/a
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Bootstrapping

Cleaning and smoothing

Problem

Initial data can rough, inconsistent and missing.

Process

1 Patch up missing values where there is a principle

2 Solve Laplace’s equation in the remaining regions

3 Modify the mask to be compatible with new results

4 Make data consistent where appropriate

5 Run model for a short period to smooth data
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Bootstrapping

Temperature and age

Problem

Temperature and grain size are
needed to compute flow.

The Right Way c©
Solve the inverse problem.

The Ad-hoc Way

Hold geometry constant while
running temperature evolution
until it converges.
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Bootstrapping
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Bootstrapping

Temperature and age
Problem

Temperature and grain size are
needed to compute flow.

The Right Way c©
Solve the inverse problem.

The Ad-hoc Way

Hold geometry constant while
running temperature evolution
until it converges.
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Bootstrapping

Which regime is where?

Problem

Where are the streams.

The Right Way c©
Solve the some hard variational
inequality ala Schoof.

The Ad-hoc Way

1 Use balance velocity and
SIA deformation to calculate
ubasal.

2 Where |ubasal| is large, use
streams.
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Bootstrapping

Which regime is where? Problem

Where are the streams.

The Right Way c©
Solve the some hard variational
inequality ala Schoof.

The Ad-hoc Way

1 Use balance velocity and
SIA deformation to calculate
ubasal.

2 Where |ubasal| is large, use
streams.
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Bootstrapping

log10 Speed
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Bootstrapping

A full ice age cycle

Observations

1 Even if Antarctica is nearly in steady state now, it hasn’t been
forever.

2 Temperature (in ice and bedrock) reflect history.

3 Age and grain size reflect history.

4 Uplift rates reflect history.

We need

1 a well tuned model

2 a good reconstruction of climate history

3 lots of computer time for a high resolution model
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Summary

Our model is

1 Multi-modal (SIA and MacAyeal)

2 Verifiable for each regime separately

3 Parallel

Further work

For the Mathematician

1 Variational Inequality
approaches

2 Inverse problems

3 Existence and uniqueness for
MacAyeal Equations

4 Prove anything about
coupled systems

For the Physicist

1 Unified shallow model

2 Improved basal dynamics

3 Anisotropy


	Physics
	Constitutive Relations
	Stokes Equations
	Basal dynamics

	Approximations
	Shallow Ice Approximation
	Ice Shelf and Stream Flow

	Numerical Tools
	Portable Extensible Toolkit for Scientific computing
	Programming Considerations

	Solving the equations
	Shallow Ice Approximation
	The Macayeal Equations

	Verification and Antarctica
	Verification
	Shallow Ice
	Macayeal Equations

	Antarctica
	Current data
	Tuning
	Bootstrapping

	Summary


