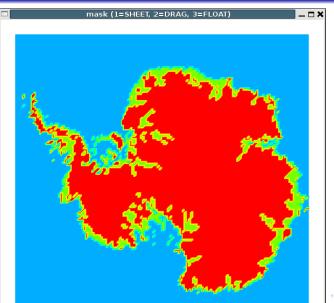
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Verifying PISM, once known as "COMMVNISM" A <u>C++</u> <u>Object-oriented Multi-M</u>odal, <u>V</u>erifiable <u>Numerical Ice Sheet M</u>odel

Jed Brown¹ Ed Bueler¹ Craig Lingle²

¹Department of Mathematics University of Alaska Fairbanks

²Snow, Ice, and Permafrost Group University of Alaska Fairbanks


2006-08-04 / MS Project Defense / retitled by ELB 10/17/06

Approximations

Numerical Tools

Solving the equations

Multi-modal flow

■▶ ▲■▶ ■ のへの

Numerical Tools

Solving the equations 00000000

Theory and Implementation

Physics

- Constitutive Relations
- Stokes Equations
- Basal dynamics

2 Approximations

- Shallow Ice Approximation
- Ice Shelf and Stream Flow

3 Numerical Tools

- Portable Extensible Toolkit for Scientific computing
- Programming Considerations

④ Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics •0000000000	Approximations 0000000	Numerical Tools 0000000000	Solving the equations
Constitutive Relations			
Outline			

- Constitutive Relations
- Stokes Equations
- Basal dynamics
- 2 Approximations
 - Shallow Ice Approximation
 - Ice Shelf and Stream Flow
- 3 Numerical Tools
 - Portable Extensible Toolkit for Scientific computing

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- Programming Considerations
- 4 Solving the equations
 - Shallow Ice Approximation
 - The Macayeal Equations

Physics 0●00000000000	Approximation			erical Tools	Solving the equ	ations
Constitutive Relat	tions					
The Str	ess Tensor					
Stress	;					
Units	of pressure (Pa)					
		г		٦		
		$ au_{xx}$	$ au_{xy}$	τ_{xz}		
		$\tau = \begin{bmatrix} \tau_{xx} \\ \tau_{yx} \\ \tau_{zx} \end{bmatrix}$	$ au_{yy}$	τ_{yz}		
		τ_{zx}	$ au_{zy}$	τ_{zz}		

Pressure

$$P = -\frac{1}{3}(\tau_{xx} + \tau_{yy} + \tau_{zz})$$

Deviatoric stress

$$\sigma_{ij} = \tau_{ij} + P\delta_{ij}$$

Physics 0000000000	Approximations 0000000	Numerical Tools	Solving the equations
Constitutive Relations			
Strain Rate			

Strain

$$\epsilon = \frac{\Delta L}{L}$$

Strain rate

$$D_{ij} = \dot{\epsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Relationship to stress

$$D_{ij} = F(\sigma, \dots)\sigma_{ij}$$

where σ is the second invariant of σ_{ij}

$$2\sigma^2 = \left\|\sigma_{ij}\right\|_{\mathsf{Frob}}^2 = \sigma_{ij}\sigma_{ij}$$

Physics 000●0000000	Approximations 0000000	Numerical Tools	Solving the equations
Constitutive Relations			
Simplificati	ons		

Symmetry

Deviatoric stress and strain rate are symmetric tensors.

$$\sigma_{ij} = \sigma_{ji} \qquad D_{ij} = D_{ji}$$

Trace zero

- Deviatoric stress has zero trace.
- Incompressibility implies strain rate is also trace free.

$$\sigma_{ii} = 0 \qquad D_{ii} = 0$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Physics 00000000000	Approximations 0000000	Numerical Tools	Solving the equations
Constitutive Relations			
Glen Flow	Law		

Recall

$$D_{ij} = F(\sigma, \dots)\sigma_{ij}$$

Power Law

$$F(\sigma, T, P) = A(T^*)\sigma^{n-1}$$

in terms of homologous temperature

$$T^* = T + CP$$

Arrhenius Relation

$$A(T^*) = A_0 \exp\left(-\frac{Q}{RT}\right)$$

★□> ★□> ★ □> ★ □> ▲□ ● のQ@

Goldsby-Kohlstedt Flow Law

A nontrivial combination

$$\begin{split} F(\sigma, T^*, P, d) &= F_{\mathsf{diff}}(\sigma, T^*, d) + F_{\mathsf{disl}}(\sigma, T^*, P) \\ &+ \left(\frac{1}{F_{\mathsf{basal}}(\sigma, T^*)} + \frac{1}{F_{\mathsf{gbs}}(\sigma, T^*, P, d)}\right)^{-1} \end{split}$$

Each term has form similar to Glen's flow law, but

- different exponents, but all ≥ 1
- different Arrhenius terms

Monotonicity

The function $D(\sigma) = F(\sigma, T^*, P, d)\sigma$ is strictly increasing.

Physics ○○○○○●○○○○○	Approximations 0000000	Numerical Tools	Solving the equations
Stokes Equations			
Outline			

Constitutive Relations

Stokes Equations

Basal dynamics

2 Approximations

- Shallow Ice Approximation
- Ice Shelf and Stream Flow

3 Numerical Tools

• Portable Extensible Toolkit for Scientific computing

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics ○○○○○○●●○○○○	Approximations 0000000	Numerical Tools 0000000000	Solving the equations
Stokes Equations			
Stokes equat	tions		

Incompressibility

$$\nabla \cdot \boldsymbol{u} = 0$$

Force balance

$$(\mathsf{Inertial term}) = \nabla \cdot \boldsymbol{\tau} + \boldsymbol{F}$$

Slow flow

drop the inertial term and write in terms of deviatoric stress

$$\nabla P = \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{F}$$

where ${m F}=
ho {m g}$ is gravitational force

Physics ○○○○○○○●○○○	Approximations 0000000	Numerical Tools	Solving the equations
Stokes Equations			
Inverting a	flow law		

Working with stresses is sometimes inconvenient.

A different approach

With $D^2 = rac{1}{2} D_{ij} D_{ij}$, define $u(D,\dots)$ so that the scalar equation

$$\sigma = 2\nu(D,\dots)D$$

is equivalent to

$$D = F(\sigma, \dots)\sigma$$

Example

For the Glen flow law,

$$\nu(D, T^*) = \frac{B(T^*)}{2} D^{\frac{n-1}{n}}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Physics ○○○○○○○○●○○	Approximations 0000000	Numerical Tools	Solving the equations
Basal dynamics			

Jutline

- Constitutive Relations
- Stokes Equations

Basal dynamics

2 Approximations

• Shallow Ice Approximation

• Ice Shelf and Stream Flow

3 Numerical Tools

• Portable Extensible Toolkit for Scientific computing

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics ○○○○○○○○●●	Approximations 0000000	Numerical Tools	Solving the equations
Basal dynamics			
Linear slidi	ng		

Note

All basal sliding is thermally activated. If ice is frozen to the bed, there is no sliding.

Motivation

Linear viscous till

- viscosity ν
- thickness L

$$(\mathsf{basal velocity}) = rac{L}{
u}(\mathsf{basal stress})$$

Dragging

$$(basal stress) = \beta(basal velocity)$$

ヘロト 人間 とくほと くほど

2

Physics ○○○○○○○○○	Approximations 0000000	Numerical Tools	Solving the equations
Basal dynamics			
Alternate s	chemes		

Power law till

$$u_i = C\sigma^{n-1}\sigma_{i3}$$
$$\sigma_{i3} = \beta(\boldsymbol{u})u_i$$

Plastic till

$$\sigma_{i3} = \sigma_{\text{critical}} \frac{u_i}{|\boldsymbol{u}|}$$

Basal water models

Solve a nonlinear PDE for water pressure (Jesse Johnson)

② Use bed elevation and basal melt rate in an ad-hoc scheme

Physics 00000000000	Approximations •000000	Numerical Tools	Solving the equations
Shallow Ice Approximati	on		
Outling			

липе

- Constitutive Relations
- Stokes Equations
- Basal dynamics

2 Approximations

• Shallow Ice Approximation

Ice Shelf and Stream Flow

3 Numerical Tools

• Portable Extensible Toolkit for Scientific computing

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics 000000000000	Approximations 000000	Numerical Tools	Solving the equations
Shallow Ice Approximati	on		
Non-dimen	sionalization		

Critical assumptions

Thickness scale [H], horizontal scale [L], aspect ratio $\epsilon = [H]/[L]$

 $\sigma_{13}, \sigma_{23} \sim \rho g[H] \epsilon \qquad \sigma_{ii}, \sigma_{12} \sim \rho g[H] \epsilon^2$

$$P - \rho g(h - z) \sim \rho g[H]\epsilon^2$$

Consequences

- **1** Only shear parallel to bed remains σ_{13}, σ_{23}
- 2 Shear is proportional to depth.
- Solution Flow is completely determined by local quantities

Physics	

Approximations

Numerical Tools

 $\begin{array}{c} \text{Solving the equations} \\ \text{000000000} \end{array}$

Shallow Ice Approximation

Equations

The system

$$\begin{aligned} \frac{\partial h}{\partial t} &= M - \nabla \cdot \boldsymbol{Q} \\ \boldsymbol{Q} &= \overline{\boldsymbol{U}}H \quad \text{and} \quad \boldsymbol{Q} = D\nabla h \\ \frac{\partial \boldsymbol{U}}{\partial z} &= -2F(\sigma, T, \dots)P\nabla h \\ \frac{\partial T}{\partial t} &+ \boldsymbol{u} \cdot \nabla T = K \frac{\partial^2 T}{\partial z^2} + (\text{strain heating}) \end{aligned}$$

Isothermal, Glen

$$h_t = M +
abla \cdot \left[\Gamma H^{n+2} \left|
abla h
ight|^{n-1}
abla h - H oldsymbol{u}_{\mathsf{basal}}
ight]$$

an

Physics	

Approximations

Numerical Tools

Solving the equations

Shallow Ice Approximation

Sliding in SIA regions

Example

A common algorithm

• Compute shear stress at the bed: $\sigma_{i3} = \rho g H \frac{\partial h}{\partial x_i}$

2) if
$$T_{bed} = T_{pmp}$$
 then $u_i = \mu \sigma_{i3}$

 \bigcirc else $u_i = 0$

Problems

- Horizontal velocity is not continuous
- Vertical velocity is unbounded
- Operation of the second sec

Physics 00000000000	Approximations	Numerical Tools	Solving the equations
Ice Shelf and Stream Flow			
Outline			

- Constitutive Relations
- Stokes Equations
- Basal dynamics

2 Approximations

- Shallow Ice Approximation
- Ice Shelf and Stream Flow

3 Numerical Tools

• Portable Extensible Toolkit for Scientific computing

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Non-dimen	sionalization		
Ice Shelf and Stream Flo	w		
000000000000	0000000	0000000000	000000000
Physics	Approximations	Numerical Tools	Solving the equations

Thickness [H], thickness variation [s], aspect ratio $\epsilon = [H]/[L]$

Critical assumptions (Schoof 2006)

 $\sigma_{13}, \sigma_{23} \sim \rho g[s] \epsilon \qquad \qquad \sigma_{ii}, \sigma_{12} \sim \rho g[s]$

$$P - \rho g(h - z) \sim \rho g[s]$$

Recall SIA critical assumptions

$$\sigma_{13}, \sigma_{23} \sim \rho g[H] \epsilon \qquad \sigma_{ii}, \sigma_{12} \sim \rho g[H] \epsilon^2$$
$$P - \rho g(h - z) \sim \rho g[H] \epsilon^2$$

Consequences

- No shear parallel to bed
- e Horizontal velocity is independent of depth

Approximations

Numerical Tools

Solving the equations

Ice Shelf and Stream Flow

The MacAyeal Equations

Coordinate free form (Vectors in 2 dimensions)

$$\nabla \cdot (2\nu H \boldsymbol{D}) + \nabla \operatorname{tr}(2\nu H \boldsymbol{D}) - \beta \boldsymbol{u} = \rho g H \nabla h$$
$$\nu = \frac{\overline{B}}{2} \left(\frac{1}{2} \|\boldsymbol{D}\|_{\mathsf{Frob}}^2 + \frac{1}{2} (\operatorname{tr} \boldsymbol{D})^2 \right)^{\frac{1-n}{2n}}$$

Usual form

$$\begin{split} & \left[2\nu H(2u_x + v_y)\right]_x + \left[\nu H(u_y + v_x)\right]_y - \beta_1 u = \rho g H h_x \\ & \left[2\nu H(2v_y + u_x)\right]_y + \left[\nu H(u_y + v_x)\right]_x - \beta_2 v = \rho g H h_y \\ & \nu = \frac{\overline{B}}{2} \left[\frac{1}{2}u_x^2 + \frac{1}{2}v_y^2 + \frac{1}{2}(u_x + v_y)^2 + \frac{1}{4}(u_y + v_x)^2\right]^{\frac{1-n}{2n}} \end{split}$$

) Q (~

Physics Approximations		Numerical Tools	Solving the equations
PETSc			

Outline

- Constitutive Relations
- Stokes Equations
- Basal dynamics
- 2 Approximations
 - Shallow Ice Approximation
 - Ice Shelf and Stream Flow

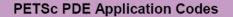
3 Numerical Tools

• Portable Extensible Toolkit for Scientific computing

- Programming Considerations
- 4 Solving the equations
 - Shallow Ice Approximation
 - The Macayeal Equations

Physics	

Approximations


Numerical Tools

Solving the equations

Management

PETSc

Overview

Matrices, Vectors, Indices

Profiling Interface

Computation and Communication Kernels MPI, MPI-IO, BLAS, LAPACK

Approximation: 0000000 Numerical Tools

Solving the equations

PETSc

Message Passing Interface

Advantages

- Message passing standard
- Portable
- O Low level
- 4 Fast
- I Flexible

Disadvantages

Low level

Approximations

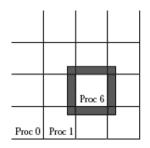
Numerical Tools

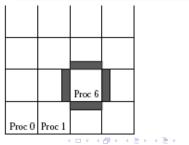
Solving the equations

PETSc

Distributed arrays and vectors

DA


Describes parallel layout


- Ghosted values
- 2 Periodicity
- Oordinates

Vec

Holds scalar quantities

- Can be based on DA
- Icologia Second Seco
- Oan be viewed
- Algebra with matrices

Physics 00000000000	Approximations 0000000	Numerical Tools	Solving the equations
PETSc			

Iterative linear algebra

Problems with direct linear algebra

- Slow: $\mathcal{O}(n^3)$
- Ooes not take advantage of sparsity
- S Complicated and may not parallelize well

Krylov Subspace Methods

Orthogonalize the subspace $\operatorname{span}\{b, Ab, A^2b, \dots, A^kb\}$ Minimize norm of residual r = b - Ax over subspace.

Preconditioning

Better convergence when condition number $||A|| ||A^{-1}||$ is small. If $P^{-1}A$ is well conditioned, solve $P^{-1}Ax = P^{-1}b$.

Physics Approximations 000000000000000000000000000000000000		Numerical Tools	Solving the equations
PETSe			

Krylov Subspace methods

Problem

Efficiently solve Ax = b where x and b are distributed and A is

- Sparse, huge and distributed OR
- 2 Defined by a function

KSP Acronym Soup

- Conjugate Gradients
- OMRES(n)
- 8 Bi-CGStab
- Transpose free QMR
- MINRES

PC Acronym Soup

- (block) Jacobi
- SOR
- ILU(k), ICC(k)
- Multigrid
- External AMG

Bonus

All KSP and PC are extremely customizable at command line.

Physics 00000000000	Approximations 0000000	Numerical Tools	Solving the equations
PETSc			

Putting it all together

Nonlinear Solvers					Time S	teppers	
Newton-based Methods		Other		Euler	Backward	Pseudo Time Other	Other
Line Search Trust Region		Oulei		Eulei	Euler	Stepping	Otilei

Krylov Subspace Methods							
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other

Preconditioners						
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others

Matrices					
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other

Distributed Arrays		Index Sets			
		Indices	Block Indices	Stride	Other
Vectors					

Physics 000000000000	Approximations 0000000	Numerical Tools 0000000●000	Solving the equations
PETSc			
Visualizatio	on		

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

PETSc

Runtime viewers

Real-time convergence monitoring for KSP

Internal diagnostics and profiling

External software

Matlab

Vis5D

Approximations

Numerical Tools

Solving the equations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Programming Considerations

Outline

Physics

- Constitutive Relations
- Stokes Equations
- Basal dynamics
- 2 Approximations
 - Shallow Ice Approximation
 - Ice Shelf and Stream Flow

3 Numerical Tools

- Portable Extensible Toolkit for Scientific computing
- Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Approximations

Numerical Tools

Solving the equations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Programming Considerations

Other software

Recommended open source tools

- netCDF: A platform independent binary format
- FFTW: Discrete Fourier Transforms
- **GSL**: Integration, special functions, etc.
- Operation Processing

Physics

Approximations

Numerical Tools

Solving the equations

Programming Considerations

Parallel considerations

Array layout

- Our 3D work is column oriented; address as T[i][j][k]
- ② 3D and 2D arrays should have compatible layout
- Operiodic

Message passing

- need to communicate ghosted values before taking derivatives
- ghosted values are small packets
- Iatency is more critical than bandwidth
- In multiplexing ghosted communication would help

Scaling

- many communications per time step
- ② can saturate more processors with large grids

Physics 00000000000	Approximations 0000000	Numerical Tools 0000000000	Solving the equations
SIA			

Outline

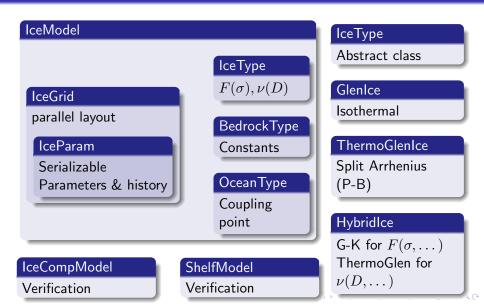
- Constitutive Relations
- Stokes Equations
- Basal dynamics
- 2 Approximations
 - Shallow Ice Approximation
 - Ice Shelf and Stream Flow
- 3 Numerical Tools
 - Portable Extensible Toolkit for Scientific computing

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics	
	DC

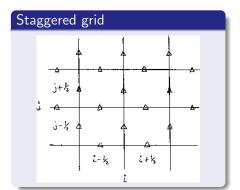

Approximations

Numerical Tools

Solving the equations 0 = 0 = 0 = 0

SIA

Class structure



Physics 00000000000	Approximations 0000000	Numerical Tools	Solving the equations
SIA			
Core model			

Continuity Equation

$$h_t = M - \nabla \cdot \boldsymbol{Q} \tag{1}$$

$$\boldsymbol{Q} = D \nabla h \text{ (SIA)} \quad \boldsymbol{Q} = \overline{\boldsymbol{U}} H \text{ (MacAyeal)} \tag{2}$$

Features

- Explicit mass balance
- 2 Semi-implicit temperature
- 3 Adaptive time stepping
- Asynchronous grain size
- Service Flexible parallel regridding

Physics 00000000000	Approximations 0000000	Numerical Tools 0000000000	Solving the equations
The Macayeal Equations			

Physics

Jutline

- Constitutive Relations
- Stokes Equations
- Basal dynamics
- 2 Approximations
 - Shallow Ice Approximation
 - Ice Shelf and Stream Flow
- **3** Numerical Tools
 - Portable Extensible Toolkit for Scientific computing

• Programming Considerations

4 Solving the equations

- Shallow Ice Approximation
- The Macayeal Equations

Physics 000000000000	Approximations 0000000	Numerical Tools	Solving the equations ○○○○●○○○○
The Macayeal Equation	s		
The iterati	on		

Algorithm

until converged do compute effective viscosity assemble linear system solve linear system end

Orderings

- DA ordering is nice for finding neighbors
- Ø Matrix structure would be obnoxious in DA ordering
- () We want to solve for two vectors (u,v) simultaneously
- We can use a different ordering for the linear system

Physics 000000000000	Approximations 0000000	Numerical Tools	Solving the equations
The Macayeal Equations	;		
Effective vi	scosity		

Equation

$$\nu = \frac{\overline{B(T,\dots)}}{2} \left[\frac{1}{2}u_x^2 + \frac{1}{2}v_y^2 + \frac{1}{2}(u_x + v_y)^2 + \frac{1}{4}(u_y + v_x)^2 \right]^{\frac{1-n}{2n}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observations

- $\textcircled{0} \ \ \mbox{We need ghosted values to calculate } \nu$
- It is hard to find neighbors in KSP-ordering
- **③** We need to do a scatter operation during the iteration.

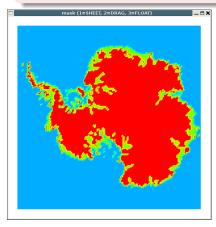
Physics 00000000000	Approximations 0000000	Numerical Tools 0000000000	Solving the equations
The Macayeal Equations			
Effective visc	osity		

Equation

$$\nu = \frac{\overline{B(T,\dots)}}{2} \left[\frac{1}{2}u_x^2 + \frac{1}{2}v_y^2 + \frac{1}{2}(u_x + v_y)^2 + \frac{1}{4}(u_y + v_x)^2 \right]^{\frac{1-n}{2n}}$$

Observations

- 2 It is hard to find neighbors in KSP-ordering
- **③** We need to do a scatter operation during the iteration.


Alternatives

- Manually communicate ghosted values in KSP-ordering
- ② Create a new DA to hold 2-vectors and use for Matrix ordering

Physics 000000000000	Approximations 0000000	Numerical Tools	Solving the equations
The Macayeal Equation	s		
Matrix assembly			

Equation

$$2\left[\nu H(u_x + v_y)\right]_x + \left[\nu H(u_y + v_x)\right]_y - \beta u = \rho g H h_x$$

SIA Region

Put 1 on diagonal and computed u on RHS

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Macayeal Region

- 13 point stencil
- ${\color{black} 2} \hspace{0.1 cm} \nu \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \beta \hspace{0.1 cm} \text{use old} \hspace{0.1 cm} {\color{black} u}$

Physics 0000000000000 Approximations

Numerical Tools

Solving the equations

The Macayeal Equations

Solving the linear system

Our choice

GMRES(30) with ILU preconditioning

Just as good

CGS with Block Jacobi preconditioning half the iterations, but iterations take twice as long

Multigrid Preconditioning

- Would be easy to implement
- Ice streams are inherently high frequency
- Probably a waste of time

Physics 000000000000	Approximations 0000000	Numerical Tools	Solving the equations ○○○○○○○●
The Macayeal Equation	s		
A better so	cheme		

Minimize the Schoof-MacAyeal Functional

$$egin{aligned} J(oldsymbol{v}) &= \int_{\Omega} rac{2BH}{p} ig[D_{ij}(oldsymbol{v}) D_{ij}(oldsymbol{v})/2 + D_{ij}(oldsymbol{v})^2/2 ig]^{p/2} + au \, |oldsymbol{v}| - oldsymbol{f} \cdot oldsymbol{v} d\Omega \ &- \int_{\partial \Omega} oldsymbol{F} \cdot oldsymbol{v} d\Gamma \end{aligned}$$

Nonlinear conjugate gradients

- Easy to implement with PETSc SNES
- 2 The Jacobian is essentially the same matrix as before
- Should converge faster and be more robust

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Verification and Antarctica

5 Verification

- Shallow Ice
- Macayeal Equations

6 Antarctica

- Current data
- Tuning
- Bootstrapping

Shallow Ice

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Shallow Ice

Macayeal Equations

6 Antarctica

- Current data
- Tuning
- Bootstrapping

Shallow Ice

Isothermal Tests

Exact solutions

- Moving margin similarity
- Openatory accumulation
- Basal sliding with compensatory accumulation

Observations

- Exact numerical volume conservation
- 2 Large errors near margin
- Small errors in interior

Shallow Ice

Thermocoupled Tests

Exact solutions

- Compensatory heating
- Perturbation in anulus
- Margin has isothermal shape

Observations

- Convergence of coupled geometry and temperature
- 2 No "spokes"
- Verified model produces spokes for EISMINT experiment F

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Shallow Ice

• Macayeal Equations

6 Antarctica

- Current data
- Tuning
- Bootstrapping

Exact solutions

The 1D Weertman solution

$$D_{xx} = \left(\frac{\rho g h}{4\overline{B}}\right)^n$$

The 2D Weertman solution

$$D_{xx} = D_{yy} = 3^{-(n+1)/2} \left(\frac{\rho g h}{2B}\right)^n$$

Observation

All second derivatives are zero. These are boring for verification.

Finding an interesting exact solution

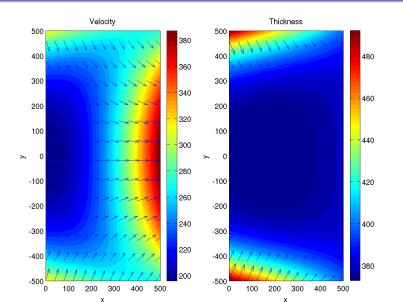
Compensatory drag

- **(**) Choose nontrivial H, b, u, v
- **②** Compute β_1 and β_2 to satisfy Macayeal equations

Software helps

Use Matlab or a symbolic algebra software (Maxima, Maple, Mathematica)

Criteria for a good compensatory solution

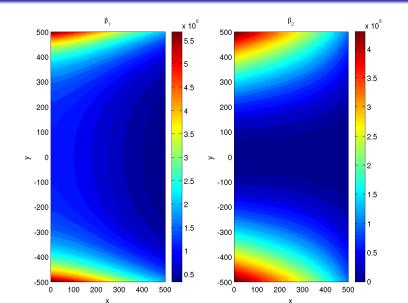

- $\textcircled{0} \hspace{0.1 cm} \beta_1 \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \beta_2 \hspace{0.1 cm} \text{should both be nonnegative and reasonably sized}$
- 2 β_1 and β_2 should be similar

Antarctica

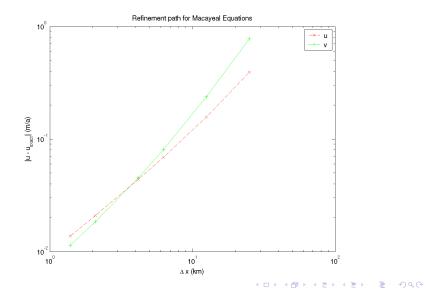
Summary

Macayeal Equations

A solution



Antarctica


Summary

Macayeal Equations

How realistic is it?

Convergence of the linearized problem

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Macayeal Equations

Convergence of the nonlinear problem

Problem

There may be multiple fixed points of our iteration.

Current data

Outline

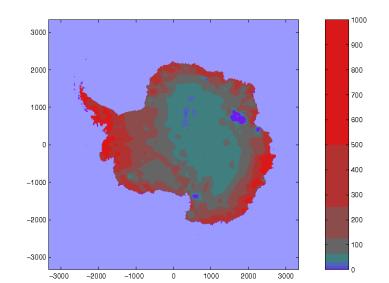
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

5 Verification

- Shallow Ice
- Macayeal Equations

6 Antarctica

Current data

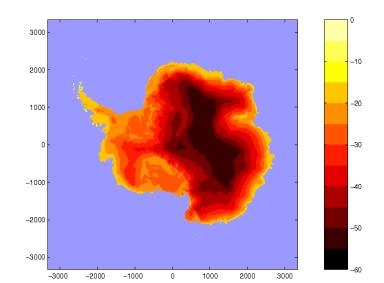

- Tuning
- Bootstrapping

Antarctica

Summary

Current data

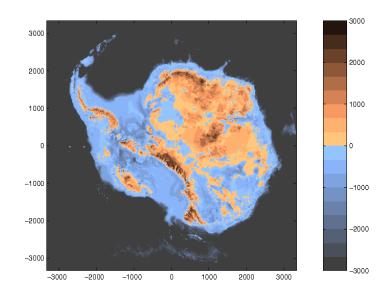
Accumulation British Antarctic Survey 2004



Antarctica

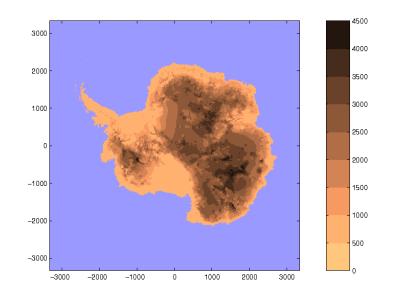
Summary

Current data


Temperature British Antarctic Survey 2004

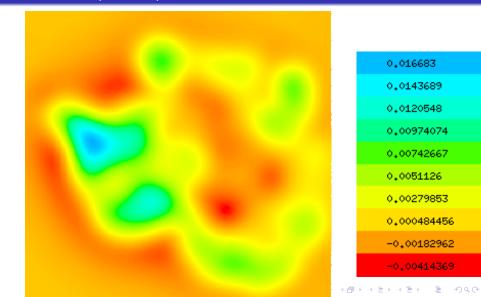
Summary

Current data


Bed elevation British Antarctic Survey 2004

Summary

Current data


Thickness British Antarctic Survey 2004

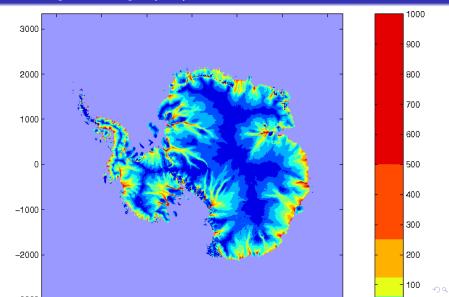
Summary

Current data

Uplift Rate Ivins and James (1998; JGR)

Summary

Current data


Geothermal heat flux Shapiro & Ritzwoller (2004; Earth Planetary Sci. Let.)

		154,112
	al market and	141,834
	11 March	129,555
V	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	117,277
1 million (1997)		104,999
Star 1	Carlos and the	92,7203
Corres .	1100	80,4419
	1000	68,1636
	- 100 C	55,8852
	100 C	43,6068
Contraction of the local distance of the loc	March 1	(□) < 0) < 0) < 0) < 0) < 0) < 0) < 0) <

Summary

Current data

Balance velocity Bamber, Vaughan and Joughin (1999)

Tuning

Outline

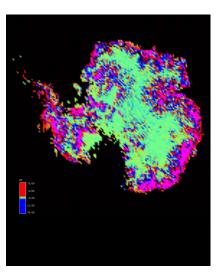
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

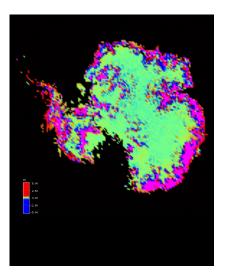
5 Verification

- Shallow Ice
- Macayeal Equations

• Current data

• Tuning


Bootstrapping


Antarctica

Summary

Tuning

Assessing a flow law

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - つへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tuning

Glen vs. Goldsby-Kohlstedt

One measure

Let F be the frozen bed region and optimize enhancement factor so \$r\$

$$\int_F h_t = 0.$$

Observe $||h_t||_{L^1(F)}$ and $||h_t||_{L^2(F)}$.

Constitutive Relation	1-norm	2-norm
Goldsby-Kohlstedt	0.52 m/a	1.5 m/a
Glen	1.3 m/a	4.9 m/a

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Bootstrapping

Outline

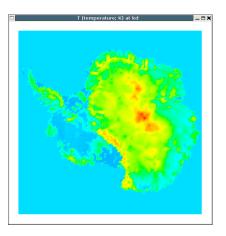
- Shallow Ice
- Macayeal Equations

- Current data
- Tuning
- Bootstrapping

Bootstrapping

Cleaning and smoothing

Problem


Initial data can rough, inconsistent and missing.

Process

- Patch up missing values where there is a principle
- Solve Laplace's equation in the remaining regions
- Modify the mask to be compatible with new results
- Make data consistent where appropriate
- Sun model for a short period to smooth data

Bootstrapping

Temperature and age

Problem

Temperature and grain size are needed to compute flow.

The Right Way ⓒ

Solve the inverse problem.

The Ad-hoc Way

Hold geometry constant while running temperature evolution until it converges.

Bootstrapping

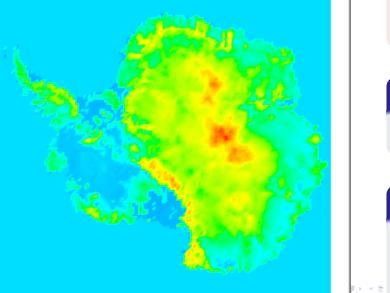
Temperature and age

🗆 Contour	_ – ×
273,096	
268,958	
264,819	
260,681	
256,543	
252,405	
248,266	
244,128	
239,99	
235,852	

Problem

Temperature and grain size are needed to compute flow.

The Right Way ©


Solve the inverse problem.

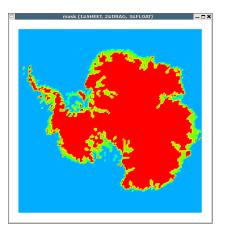
The Ad-hoc Way

Hold geometry constant while running temperature evolution until it converges.

Bootstrapping

Temperature and age

needed The Rig


Solve th

The Ad-

Hold ger running

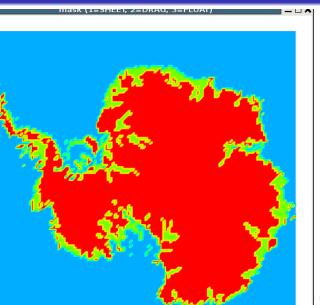
Bootstrapping

Which regime is where?

Problem

Where are the streams.

The Right Way 🔘


Solve the some hard variational inequality ala Schoof.

The Ad-hoc Way

- Use balance velocity and SIA deformation to calculate ubasal.
- Where |u_{basal}| is large, use streams.

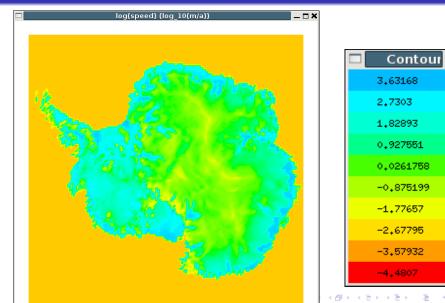
Bootstrapping

Which regime is where?

Where are t

The Right V Solve the so

inequality al


The Ad-hoc

- Use bal SIA def
 - . .

_ [

Bootstrapping

$\log_{10}\text{Speed}$

Bootstrapping

A full ice age cycle

Observations

- Even if Antarctica is nearly in steady state now, it hasn't been forever.
- **2** Temperature (in ice and bedrock) reflect history.
- 3 Age and grain size reflect history.
- Oplift rates reflect history.

We need

- a well tuned model
- 2 a good reconstruction of climate history
- Iots of computer time for a high resolution model

Summary

Our model is

- Multi-modal (SIA and MacAyeal)
- Verifiable for each regime separately
- In Parallel

Further work

For the Mathematician

- Variational Inequality approaches
- Inverse problems
- Existence and uniqueness for MacAyeal Equations
- Prove anything about coupled systems

For the Physicist

- Unified shallow model
- Improved basal dynamics

Anisotropy