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OVERVIEW

1. explain the problem I’m working on
2. mention the (current) barriers to success

work in progress
I am giving this talk at 4am my time
I low expectations, please
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THE ICE GEOMETRY PROBLEM (IGP)

how does glacier geometry evolve in response to the climate?
only the simplest version (grounded, nonsliding, isothermal)
assume time-independent data on fixed Ω ⊂ R2:
I (net) climatic mass balance a(x , y) ← a > 0 for accumulation
I bed elevation b(x , y)

to compute: surface elevation s(t , x , y) on Ω
icy domain Λs ⊂ R3
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SURFACE KINEMATICAL EQUATION

glaciers flow, so one must solve the surface kinematical
equation (SKE) on the ice

∂s
∂t
− u|s · ns − a = 0

I ns = 〈−sx ,−sy ,1〉 is an upward normal to the ice surface

I where not on the ice: a ≤ 0

assumed:
I s well-defined (no overhangs)
I s = b where ice is not present

∴ s is defined on all of Ω
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STEADY IGP STRONG FORM

the steady IGP is a nonlinear complementarity problem (NCP)
for s, a free-boundary problem, which is coupled to a
non-Newtonian Stokes problem for u,p:

s − b ≥ 0 on Ω

−u|s · ns − a ≥ 0 ”
(s − b)(−u|s · ns − a) = 0 ”

−∇ · (2νε Du) +∇p − ρig = 0 on Λs

∇ · u = 0 ”
u = 0 on Γ0 (ice base)

(2νεDu− pI) n = 0 on ∂Λs \ Γ0

NCP

Stokes

I Glen-law effective viscosity with p = (1/n) + 1(= 4/3):

νε =
1
2

Bn
(
|Du|2 + εD2

0
)(p−2)/2

I the 3 nonlinearities
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IMPLICIT IGP STRONG FORM

solve one step of backward Euler for s,u,p at new time t`

I ∂s
∂t ≈

s`−s`−1

∆t in evolving SKE, and write s for s`

at each time step, solve NCP coupled to Stokes:

s − b ≥ 0 on Ω

s − s`−1 −∆t u|s · ns −∆t a ≥ 0 ”

(s − b)(s − s`−1 −∆t u|s · ns −∆t a) = 0 ”
−∇ · (2νε Du) +∇p − ρig = 0 on Λs

∇ · u = 0 ”
u = 0 on Γ0

(2νεDu− pI) n = 0 on ∂Λs \ Γ0

I very similar to steady IGP
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EXISTING ICE SHEET MODELS

almost no one is solving such a implicit or steady IGP
I except Bueler (2016), Brinkerhoff et al (2017) (shallow)
I and Wirbel & Jarosch (2020) (semi-coupled, fake ice layer)
I none are scalable (single level)

what are people doing instead, for production science?
I explicit time-stepping with s ≥ b enforced by truncation
I usually shallow approximations, e.g. PISM run below

by Julien Seguinot
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REWRITE COUPLING AS OPERATOR

ice dynamics operator

Φ : s 7→ −u|s · ns

to compute Φ(s): build Λs, solve weak-form Stokes problem

FΛs (u,p)[v,q] =

∫
Λs

2νεDu : Dv−p∇·v−(∇·u)q−ρig·v dx = 0,

extract trace u|s, then extend Φ(s) = −u|s · ns by zero to Ω
regarding this Stokes problem (for fixed geometry):
I well-posed over W 1,p

0 (Λs)3 × Lq(Λs) (Jouvet & Rappaz 2011)
I optimal solver exists (Isaac et al 2015)

∴ φ(s) is well-defined if s is piecewise C1

I which is a regularity conjecture
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IGP WEAK FORM IS A VARIATIONAL INEQUALITY

using Φ gives a cleaner NCP over Ω for the steady IGP:

s − b ≥ 0
Φ(s)− a ≥ 0

(s − b)(Φ(s)− a) = 0

I recall NCP (strong form)↔ VI (weak form)

steady IGP weak form

find admissible s ∈ K = {r ≥ b} ⊂W 1,q(Ω) so that

(Φ(s)− a, r − s) ≥ 0 for all r ∈ K

well-posedness is almost completely open
I existence holds for SIA version (Jouvet & Bueler, 2012)
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WHAT KIND OF BEAST IS Φ?

Φ : K ⊂W 1,q(Ω)→W−1,p(Ω) where q = 4 and p = 4/3
the Stokes stress balance is nonlocal
I Φ is integral operator (convolve with Stokeslets)
I Φ is short range (dense but concentrated near the diagonal)

Φ ≈ ΦSIA for shallow glaciers, a differential operator:

ΦSIA(s) = −γ
q

(s − b)q|∇2s|q −∇2 ·
[

γ

q + 1
(s − b)q+1|∇2s|q−2∇2s

]
I Φ is elliptic “in the large”
I Φ is degenerate at the ice margin

yet common to say
I Φ is advective because SKE is write-able as a transport

equation for thickness: Ht + u∇H = a
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GOAL: ROBUST AND OPTIMAL IGP SOLVER

numerical problem

given triangulation T of Ω and P1 space Vh ⊂W 1,q(Ω), and
convex set Kh = {rh ≥ bh} ⊂ Vh, solve VI for sh ∈ Kh:(

Φh(sh)− a, rh − sh
)
≥ 0 for all rh ∈ Kh

I P1 because of low regularity at free boundary
I evaluate Φh(sh) = −u|sh · nsh by solving Stokes problem

FΛsh (uh,ph) = 0
seeking a solver which is:
I robust
I near optimal O(m1+ε) work over m degrees of freedom in Vh

◦ requires multigrid . . . more below
I these are aspirations
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SMOOTHNESS AND MULTILEVEL METHODS

which solution
variable?
I surface

elevation s?
I thickness H?

smoothness suggests s is better for multigrid
I but do not put “fake ice” where s = b; only solve for ice velocity

where there is ice!
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MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

strategy

decompose Kh using mesh hierarchy and then apply V-cycles

mesh levels over Ω:
T 0 (coarse) to T J

given fine-level iterate sJ

defect constraint χJ = bJ − sJ

monotone restriction R⊕

defect constraints on levels:
χj = R⊕χj+1

admissible perturbations:
z j ≥ χj ⇐⇒ sj + z j ≥ bj
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MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

in V-cycle, on each level solve a VI:(
Φj(sj + z j)− aj , v j − z j

)
≥ 0 for all v j ≥ χj

this strategy gives an O(m log m) solver for the Laplacian
obstacle problem (Tai, 2003)
I a multilevel VI strategy is the only hope for (near) optimality

for IGP:
I for nonlinear VI, need additional FAS strategy X
I . . . but each residual is nonlocal and expensive
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STOKES ON A FIREDRAKE EXTRUDED MESH

V-cycle based on mesh hierarchy {T j} over Ω

to evaluate the residual Φ(sj)− aj in the VI:
I extrude base mesh T j to current geometry sj

◦ with or without small cliffs
I no extrusion where ice free

◦ thanks to Lawrence Mitchell for this capability
I solve Stokes problem FΛsj (u

j ,pj ) = 0
I compute Φ(sj ) = −uj |sj · nsj and subtract aj
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SMOOTHER OPTIONS

now all the evil is in the smoother
smoother options from weaker to stronger:
I nonlinear Richardson?
I exploit SIA analogy?

◦ pointwise smoothers work for SIA
I nonlinear pointwise smoothers (GS, Jacobi)?

◦ GS extremely expensive because residual nonlocal
◦ seem to fail

I reduced-space Newton using banded Jacobian
approximation?
◦ finite-difference Jacobian entries using pseudo-coloring
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STATUS REPORT

nothing works well so far
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CONCLUSION

GOAL 1: no shallow approximations in flow physics
X Stokes solver working in Firedrake on extruded mesh
X solver choices by (Isaac et al, 2015) putatively optimal

GOAL 2: beat explicit time-stepping
X observe that problem is

◦ constrained (nonlinear VI on K = {s ≥ b})
◦ diffusive in the large (Stokes ≈ SIA)
◦ nonlocal (Stokes)

X MCD FAS path to optimality for solving the VI
:-( stuck on finding a robust, efficient smoother

ultimate goal

for better science, enable long-time (paleo) simulations without
shallow approximations

thanks for your attention . . . questions?
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NCP is a barrier to exact numerical mass conservation1
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