Parameterizing Greenland’s surface mass balance in the Parallel Ice Sheet Model (PISM)

Regine Hock1
Andy Aschwanden2,
Janneke Ettema3,
Ed Bueler1,
Constantine Khroulev1,
Michiel van den Broeke3

1Geophysical Institute, University of Alaska, Fairbanks, USA
2Arctic Region Supercomputing Center, University of Alaska, Fairbanks, USA
3Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands
Background: PISM

- **Parallel Ice Sheet Model**
 is an open source, fully-parallel, high-resolution ice sheet model

- one of the models used in SeaRISE assessment (*Sea-level Response to Ice Sheet Evolution*) to project the ice sheet contributions to sea level in the next 100-200 years

Features:

- a hierarchy of available stress balances, including shallow ice and shelf approximations, a hybrid of these, and a (planned) higher-order scheme

- a polythermal, enthalpy-based conservation of energy scheme

- complete documentation for users and developers

- www.pism-docs.org

Surface velocities

Basal velocities

5 km grid
PISM: Surface mass balance

Classical degree-day approach

\[
\dot{M} = f_{\text{snow/ice}} \sum_{1}^{n} (T - T_0)
\]

- **Melt rate**
- **Degree-day factor**
- **Degree-day sum**

\[T = \text{air temperature}\]
\[T_0 = \text{threshold temperature below which there is no melt; in PISM: } T_0 = 0°C\]

Typical values for snow = 3-5 mm/d/K, ice = 6-10 mm/d/K

- **degree-day sum** is computed from positive temperatures multiplied by the duration (in days) when it is > 0°C
- **degree-day factors** according to Greve (2005), *Ann. Glac.*, → function of latitude and mean July temperature

Purpose

to improve the degree-day model in PISM:

- How do degree-day factors vary spatially?
- How do they vary in time: seasons, trends?
- What do they depend on?
- How good is the degree-day model that is currently implemented in PISM?
- How can degree-day factors be parameterized in a way that can be implemented into PISM?
Data

Model
- RACMO2/GR Regional Climate Model
- lateral atmospheric forcings: ERA40 and ECMWF operational analysis
- resolution 11 km
- September 1957 - December 2008 (51.3 years)

Data
- Monthly melt
- Monthly and daily mean 2 m air temperatures
- Daily near-surface glacier density (to distinguish between snow and ice)

Degree-day factors

Classical degree-day approach

\[\dot{M} = f_{\text{snow} / \text{ice}} \sum_{1}^{n} (T - T_0) \]

- Melt rate
- Degree-day factor
- Degree-day sum

\[T = \text{air temperature} \]
\[T_0 = \text{threshold temperature below which there is no melt;} \]
\[\text{in PISM: } T_0 = 0^\circ C \]

Daily data

Monthly data
Positive degree-days and annual melt 1957-2008

Positive degree-days, PDD (Kd)

Annual melt (mm/yr)

Positive degree-days, PDD (Kd)

Based on daily mean temperatures

Based on monthly mean temperatures

\[
\dot{M} = f_{\text{snow/ice}} T_{\text{month}}^+
\]

\[
\dot{M} = f_{\text{snow/ice}} \sum_{1}^{n} (T - T_0)
\]
Daily and monthly mean temperature and monthly melt for one grid cell.
Degree-days factors averaged over 1957-2008

DDF = total melt/PDD over whole period, only for pixels with > 10 mm/yr melt and annual PDD > 10 dK

using monthly mean data

using daily mean data
Degree-days factors averaged over 1957-2008

DDF < 20 mm/d/K

Using monthly mean data

Using daily mean data

2550 out of 14,226 grid cells = 18%
Degree-days factors averaged over 1957-2008

DDF for grid cells with > 10 mm/yr melt and annual PDD > 10 dK, and DDF < 20 mm/d/K

using **daily** mean data

Degree-day factors increase with elevation
Van den Broeke et al. (2010, GRL in press) suggest lowering the temperature threshold from 273.15 K to 268 K.

\[M = f_{\text{snow/ice}} \sum_{i=1}^{n} (T - T_0) \]

---> more realistic pattern of DDF, i.e. high DDF at low elevations and vice versa.

degree-day sums based on daily temperatures underestimate melt because of hourly temperatures above freezing while daily mean temp is below freezing.

Degree-day sum (based on daily mean T) = 0 Kd
Melt is underestimated

Degree-day sum > 0 Kd
Degree-days factors averaged over 1957-2008 using daily mean temperatures

\[T_0 = 268 \text{ K} \]

Van den Broeke et al., 2010. Temperature thresholds for degree-day modelling of Greenland ice sheet melt rates. GRL in press

\[T_0 = 273.15 \text{ K} \]
Degree-days factors for various threshold temperatures

\[\dot{M} = f_{snow/ice} \sum_{1}^{n} (T - T_0) \]

- \(T_0 = 268 \text{ K} \)
- \(T_0 = 269 \text{ K} \)
- \(T_0 = 270 \text{ K} \)
- \(T_0 = 271 \text{ K} \)
- \(T_0 = 272 \text{ K} \)
- \(T_0 = 273.15 \text{ K} \)

\[M = f_{snow/ice} \sum_{1}^{n} (T - T_0) \]
How does the temp threshold affect degree-day factors?

Degree-day sum (based on daily mean T) = 0 Kd
Melt is underestimated

Degree-day sum > 0 Kd
Melt is underestimated

Degree-day sum = positive but there is no melt
--> Melt is overestimated
Purpose

to improve the degree-day model in PISM:

- How do degree-day factors vary spatially?
- How do they vary in time: seasons, trends?
- What do they depend on?
- How good is the degree-day model that is currently implemented in PISM?
- How can they be parameterized in a way that can be implemented into PISM?
Degree-day factors after Greve (2005)

- **DDF_{snow} = 3 mm/d/K for entire Greenland**
- **DDF_{ice}**:
 - South of 72$^\circ$N: 7 mm/d/K
 - North of 72$^\circ$N: function of mean July temperature

\[
\beta_{\text{ice}} = \begin{cases}
\beta_{\text{ice}}^W \\
\beta_{\text{ice}}^W + \frac{\beta_{\text{ice}}^C - \beta_{\text{ice}}^W}{(T_W - T_C)^3} (T_W - T_{mj})^3 \\
\beta_{\text{ice}}^C
\end{cases}
\]

- \(T_{mj} \geq T_W \), \(T_C \leq T_{mj} \leq T_W \), \(T_{mj} \leq T_C \),

Based on Tarasov and Peltier, 1999
PISM: Melt after Greve (2005)

\[\dot{M} = f_{\text{snow/ice}} \sum_{1}^{n} (T - T_0) \]

Degree-day factor
Degree-day sum

Degree-day factor ice

\[f_{\text{snow}} = 3 \text{ mm/d/K} \]
over entire Greenland

Surface layer density

July 1959

Density fields used to decide whether surface is ice or snow:

\(<350 \text{ kg/m}^3 = \text{ snow: } f_{\text{snow}}\)

\(>850 \text{ kg/m}^3 = \text{ ice: } f_{\text{ice}}\)

Linear interpolation in between
How does the PDD model (Greve, 2005) compare to RACMO?

Mean over 1957-2008

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean Annual Melt</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACMO</td>
<td>243 mm/yr</td>
<td>190 mm/yr</td>
</tr>
<tr>
<td>DDF (Greve)</td>
<td>55 mm/yr</td>
<td>333 Gt !!!</td>
</tr>
</tbody>
</table>

Mean annual melt
- RACMO: 243 mm/yr
- DDF (Greve): 55 mm/yr

Total melt
- RACMO: 427 Gt
- DDF (Greve): 93 Gt

Difference
- **333 Gt !!!**
Conclusions

- Degree-day factors vary strongly in space; no clear geographical pattern
- Factors depend on the way the PDD sum is computed (averaging interval, threshold temperatures)
- Parameterization by Greve (2005) applied to RACMO temperature fields leads to considerable underestimation of melt compared to RACMO (>300 Gt/yr)

The project is funded by the NASA Modeling, Analysis, and Prediction program (grant # NNX09AJ38G)
Mean July temperature 1996 - 2006
Comparison RACMO - Fausto-parameterization

RACMO
(Ettema et al., 2009)

Parameterization
(Fausto et al., 2009)

Difference
RACMO - Parameterization

Parameterization (Fausto et al., 2009)

\[T_{\text{July}} = d + a \ z + b \ \text{lat} + c \ \text{lon} \]
DDF according to Greve (2005) using RACMO positive degree-day sums based on daily data
Degree-days factors for various threshold temperatures

 Arrow up means DDF increase with increasing elevation
 Arrows down is opposite
Degree-days factors for various threshold temperatures

- $T_0 = 269 \text{ K}$
- $T_0 = 270 \text{ K}$
- $T_0 = 271 \text{ K}$
- $T_0 = 272 \text{ K}$
- $T_0 = 273.15 \text{ K}$
Degree-days factors derived from T0=268 to 270 versus T0 = 273.15 K